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Abstract 
Drought is a major global climate change that causes decreased precipitation and 
increased temperatures and evaporation, leading to water shortages, agricultural 
decline, and population migration. Yemen's territory is located within arid and semi-
arid regions, and is characterized by its diverse terrain, including coastal, 
mountainous, eastern plateau, and desert areas. Therefore, research studying the 
phenomenon of drought is of great importance. In this study, drought was evaluated 
through a set of indicators, such as the Vegetation Condition Index, Normalize 
difference vegetation Index (NDVI) and the Drought Severity Index, to evaluate 
drought in the Yemeni regions. Using geospatial artificial intelligence and satellite 
imagery (GeoAI-EO) techniques to more accurately assess spatiotemporal drought, 
using a wide range of data. Dry months are found to last from October to April, while 
September is the least frequent month in the mountainous western regions. It was 
also found that drought is more common in the coastal areas and the eastern plateau 
than in the mountainous highlands and western slopes. Maps and graphs showed 
the difference in dry and wet climatic ranges of the drought coefficient and showed 
the extent of variation between regions and seasons . 
Keywords: climate, drought, dry areas, drought coefficients, GeoAI-EO, Yemen . 

 
1. Introduction 
Drought is one of the most important climate changes affecting the world, as it 
causes decreased rainfall rates, increased temperatures, and increased evaporation, 
leading to water shortages, a decline in agricultural production, and population 
migration. Drought can be evaluated through a set of indicators, such as the soil 
moisture index, the moisture fluctuation index, and the hydrological drought index. 
However, these traditional indicators rely on historical climate data, which may not be 
accurate in assessing spatiotemporal drought, especially in areas that suffer from the 
unavailability of climate stations and irregular climate data in addition to the 
fluctuations occurring with climate change. Artificial intelligence techniques can be 
used to more accurately assess spatiotemporal drought such as (Vegetation 
Condition Index, Normalize difference vegetation Index (NDVI) and the Drought 
Severity Index), as these techniques can use a wide range of data, including climate 
data, geographic data, and space data. The use of geospatial artificial intelligence 
and space imaging in Earth observation and spatiotemporal drought assessment has 
been done by many previous and current studies. Precipitation estimation from 
remote sensing information has been developed using artificial neural networks 
(PERSIANN), (Sorooshian et al., 2000). (Hsu et al., 1997))) at the Center for 
Hydrometry and Remote Sensing (CHRS) at the University of California, Irvine uses 
neural network technology to map the complex nonlinear functions involved in 
transferring remote sensing data to a form that can be used in Applications. While 
(Sharma et al., 2006) used spatial data mining techniques to extract drought patterns 
using Difference Vegetation Index (NDVI) and rainfall data. Both (Afzali et al., 2016) 
and (Ali et al., 2011) evaluated geostatistical methods for the spatial analysis of 
drought indicators, with Afzali focusing on the Zayandhrud River Basin in Iran and Ali 
in Bushehr Province. Ramkar and Yadav (2018) focused on the Tapi River Basin in 
India, using the rainfall index, standardized rainfall index, and reconnaissance 
drought index for temporal analysis, and the inverse distance measure method for 
spatial mapping. Shahabfar and Eitzinger (2013) evaluated six meteorological 
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drought indices in Iran, and identified Z-Score, China-Z Index, and Modified China-Z 
Index as effective predictors. (Khellouk et al., 2020) monitored surface soil moisture 
in a semi-arid region using Landsat-8 OLI images and developed a new model to 
estimate soil moisture content. Gebrehiwot (et al., 2011) assessed drought in the 
northern highlands of Ethiopia, using the standardized rainfall index and vegetation 
condition index to quantify spatial and temporal variation. (Houmma et al., 2022) 
provided a comprehensive overview of the latest developments in big data 
technologies for agricultural drought modeling, highlighting the use of multi-sensor 
remote sensing techniques and artificial intelligence. (Kikon and Deka, 2021) focus 
on applying artificial intelligence techniques in drought assessment, monitoring and 
forecasting, which underscores the need for a drought management system. 
Nohegar et al., 2013 also used geostatistical methods, especially kriging, to extract 
maps of drought indicators in southern Iran, and found that these methods were the 
most effective. (Hoque et al., 2021) and (Hoque et al., 2020) extended this approach 
to assess drought vulnerability in southern Queensland, Australia, and the 
northwestern region of Bangladesh, respectively. Both studies used a multi-criteria 
approach, combining meteorological, hydrological, agricultural and socio-economic 
factors to create comprehensive drought vulnerability maps. (Jain et al., 2015) also 
presented the Integrated Drought Vulnerability Index (IDVI) to assess spatial and 
temporal vulnerability, while (Afzali et al., 2016) evaluates different interpolation 
methods for mapping drought indices . 
Agricultural drought in the Tihama Plain in Yemen was also assessed using the 
Standardized Precipitation Index (SPI) and Geographic Information Systems (GIS) 
(Hashim et al., 2017). This study concluded that the years 1984, 1991, 2002, 2003, 
2004, 2005, 2006, and 2008 were the Highly affected by drought. A remote sensing-
based assessment of water resources in the Arabian Peninsula, including Yemen, 
revealed declining rainfall trends and TWS anomalies (Wehbe and Temimi., 2021). 
Spatiotemporal analysis of drought in the Haihe River Basin in China, using the 
Standardized Evapotranspiration Index (SPEI), showed an increasing trend in 
drought frequency and severity ( Yang et al., 2016 ). Similarly, an assessment of 
meteorological drought in West Azerbaijan Province, Iran, using the Standardized 
Precipitation Index (SPI), indicated an increase in drought duration with an increase 
in the return period and time scale (Nosrati and Zareiee 2011). Collectively, these 
studies highlight that spatial techniques have been effectively used in assessing 
drought severity and vulnerability in different regions of the world, the importance of 
the potential of Geo-artificial intelligence techniques and satellite imagery in 
enhancing the accuracy and effectiveness of spatiotemporal drought assessment, 
and the importance of considering indicators and parameters. Multiple studies in 
estimating drought, the potential of indicators based on remote sensing in arid 
regions, as well as the increasing severity and frequency of drought in Yemen and 
the need for further research and actions to address this problem. These results 
suggest that the most appropriate geostatistical method for the spatial analysis of SPI 
and EDI drought indices may vary depending on the specific location and indicator 
under study . 
 
1.2 Research problem : 
The problem of the research is that the phenomenon of drought is one of the 
frequently occurring climatic phenomena, and the location of its occurrence varies 
from one region to another, and from time to time in terms of severity and impact. It 
may continue for many years, and may cause economic and natural damage whose 
effects are reflected on humans and the environment. If the duration of the drought is 
short and severe, it is capable of causing huge losses to the local economy, and 
drought disasters may outweigh other natural disasters, including floods, in terms of 
negative effects. Therefore, recent studies have focused on studying drought and its 
serious effects on the environment in general, after the threat of drought began to 
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become more severe than it was previously, and what climate change factors have 
contributed to, in terms of the increasing frequency of drought periods and their 
increasing severity in recent times. Therefore, this study will attempt to answer the 
following questions : 
How can drought trends in Yemen be determined ? 
How is drought distributed temporally and spatially over selected areas of Yemen ? 
What are the areas most affected by drought in Yemen ? 
 
1.3The objectives : 
It is a study of changes in the temporal and spatial extent of areas suffering from 
drought conditions across Yemen, using satellite data and geographical artificial 
intelligence GeoAI-EO. More specifically, the research aims to achieve the following 
objectives: Develop an artificial intelligence model for spatiotemporal drought 
assessment. Applying the model to drought data in Yemen. Evaluating the model's 
performance in spatiotemporally assessing drought . 
 
1.4 Research Importance : 
The development of drought is a slow and complex process that can be described 
using multiple indicators and variables. Documenting changes in drought conditions 
requires long-term records of observations with appropriate temporal and spatial 
coverage, and traditional methods for estimating drought indicators based on climate 
data from monitoring stations give data about the point where the monitoring station 
is located, in contrast to indicators derived from satellite images and combined with 
GeoAI-EO will cover large areas and provide data of utmost importance, especially in 
areas such as Yemen, where monitoring stations only cover a limited area of the 
country . 
 
1.4 The most important terms 
✓ Artificial Intelligence (AI): Artificial Intelligence is a field of computer science 
that focuses on developing computers that can think and act like humans . 
✓ Geospatial artificial intelligence (GeoAI) is the field of artificial intelligence 
(AI) that uses geographic information systems (GIS) to analyze and interpret spatial 
data. Artificial intelligence that uses satellite Earth observations (EOs), which we call 
AI-EO. For the purpose of this research, we use the term (GeoAI-EO), which 
combines the two terms (geospatial artificial intelligence and space imaging .) 
✓ Definition and description of drought: The development of drought 
conditions is a very slow and complex process. Therefore, the causes and 
mechanisms involved are still not fully understood. Factors contributing to the 
development of drought include rainfall, evaporation and soil conditions. All of these 
factors, in turn, are affected by climate, winds, and long-term atmospheric and 
oceanic fluctuations. There are multiple types of dehydration, although no formal 
definition has been agreed upon, the following types are generally accepted . 

   (Wilhite and Glantz, 1985) in (Fleig et al., 2006 ) 
✓ Metrological drought = deficit in rainfall 
✓ Agricultural drought = lack of soil moisture, which affects plant cover and 
food production. It also increases the risk of forest fires as plants are drier and more 
susceptible to fire . 
✓   Hydrological drought = lack of surface water and/or groundwater . 
Reduced drinking water supplies, hydroelectric potential and water for industrial 
needs affect wildlife and humans alike . 
✓ Socioeconomic drought = measuring the impact of drought, including 
supply and demand. It is usually expressed as economic value. (Wilhite and Glantz, 
1985) in (Fleig et al., 2006) and (Damberg, 2014). 
 

2. Materials and method 
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This research relies on a range of methods and techniques, including: analysis of 
climate data, geographic data and space data. Developing artificial intelligence 
models. Evaluating the performance of artificial intelligence models. The descriptive 
analytical approach was used by reviewing a variety of sources, research, studies, 
books, technical reports, and experiences obtained about the role of GeoAI-EO in 
developing the agricultural sector, in addition to the analytical approach, a case study 
through data analysis of satellite images using various models based on To use the 
JavaScript language in the Google Earth Engine environment . 
 
2.1 Study area 
Yemen is located in the southwestern part of the continent of Asia and in the south of 
the Arabian Peninsula, between latitudes 12 degrees and 20 degrees north and 
longitudes 41 degrees and 54 degrees east. It is bordered to the north by the 
Kingdom of Saudi Arabia, to the east by Oman, to the south by the Arabian Sea and 
the Gulf of Aden, and to the west by the Red Sea, as shown in Figure (3 .) 
Yemen has a mostly semi-arid to arid climate. Rainy seasons occur during the spring 
and summer. Yemen's climate is strongly influenced by the mountainous nature of 
the country (Bruggeman, 1997). The rainfall rate rises from less than 50 mm in the 
coasts along the Red Sea and the Gulf of Aden. In the western highlands, water 
levels reach a maximum of 500-800 mm and decline steadily to less than 50 mm 
inland. 

 
Figure 1 Location of the study area, Yemen 

 
 

2.2 Indicators drought index 
Table 1 below present the mean Collection of drought index, abbreviations and input 
parameters used in their computation. 
 
Table 1 Collection of drought index, abbreviations and input parameters used in their 

computation 

Abbreviation  Full name  Input parameters 

SPI  
Standardized Precipitation 
Index 

Precipitation 

PDSI  
Palmer Severity Drought 
Index 

Precipitation and temperature (longer 
timescale, meteorological drought) 

Palmers Z-index  Palmer Z-index  
Precipitation and temperature (shorter 
timescale) 
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PHDI  
Palmer Hydrological 
Drought Index 

Precipitation and temperature (longer 
timescale, hydrological drought) 

SPEI  
Standardized Precipitation 
Evaporation Index 

Precipitation and Temperature 

SWEI  Surface Water Supply Index 
Precipitation, Reservoir storage, 
Snowpack and Streamflow 

SRI  Standardized Runoff Index Streamflow 

VCI  Vegetation Cover Index  Remote Sensing Data 

vegDRI  
Vegetation Drought 
Response Index 

Remote Sensing Data 

NDVI  
Normalized Difference 
Vegetation Index 

Remote Sensing Data 

NDWI  
Normalized Difference Water 
Index 

Remote Sensing Data 

SMI  Soil Moisture Index  
Soil Moisture Content, Wilting Point 
and Field Capacity 

DR  Dependable Rain  Precipitation 

NRI  National Rain Index (Africa) Precipitation 

Sources: (Damberg, 2014) 
2  

2.3 Standard precipitation index 
The Standardized Precipitation Index (SPI) is one of the most widely used and 
recommended drought indicators (WMO, 2009: WCRP, 2010). The SPI ranges from -
4 to +4 with negative and positive values indicating drought and wet periods, 
respectively. Figure 2 presents the concept of the SPI indicator. Since the index has 
maximum values of -4 for abnormally dry events and +4 for abnormally wet events, it 
can be interpreted It is defined as the number of standard deviations away from the 
mean for a given event (Edwards, 1997). According to SPI (McKee et al., 1993), 
values between -1 and -2 indicate moderate to severe droughts while an index of 
less than -2 indicates severe droughts . 

 
Figure 2 Standard normal distribution with SPI with mean = and variance 1. The area 
below 1 represents areas experiencing moderate to severe drought conditions for 
future studies (Edwards, 1997 ) 
 
2.4 Indicators from remote sensing data 
The increase in remote sensing data has provided researchers with the opportunity 
to develop new types of indicators that rely directly on remote sensing data. 
Indicators that look at vegetation provide information about how vegetation responds 
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to water shortages, using high-resolution radiometer data (visible and near-infrared 
reflectance from surface instruments to satellites). This technology has been 
developed since the beginning of the seventies, when satellite monitoring began . 
The positive aspects of the Native Vegetation Index (VCI) are its spatial resolution 
properties and how the data can be adjusted to suit climate, environment and 
weather. The disadvantages are that VCI is mainly useful during the summer season 
as large areas are covered with dormant plants during the winter seasons. This 
represents a particular problem for the indicator in temperate climate regions with 
strong seasons (Mishra and Singh, 2010) . 
Other indices based on remote sensing data, the Normalized Difference Water Index 
(NDWI) and the Normalized Difference Vegetation Index (NDVI), are also useful for 
assessing drought. NDVI records have been available globally since 1981 at 8 km 
resolution. The NDVI index uses the difference between near red and visible infrared 
reflectance to indicate changes in chlorophyll and intercellular space in plants. High 
NDVI values reflect healthy vegetation while low values show pressure on vegetation 
for the same time frame. Both drying and humidification can be shown in the NDVI 
index. In the development of the NDWI, the same satellite products are used with 
shortwave infrared data making it possible to retrieve changes in water content in 
vegetation (Gu et al., 2008). However, according to Gu et al. (2008). The Soil 
Moisture Deficit Index (SMDI) and the Evapotranspiration Deficit Index (EDI), both 
developed by (Narasimhand and Srinivan in 2005), are based on simulated outputs 
from hydrological models calibrated on a weekly scale. In 2009, a soil moisture index 
(SMI) was proposed which included wilting point and field capacity (Mishra and 
Singh, 2010). For Africa, there is an index called Dependable Rains, based on 
statistical rainfall occurring four out of five years in 1993 and a year later it was 
converted to the National Rainfall Index (RI). RI was calculated from rain gauges at 
the national level and was mainly used to characterize patterns at the local level. 
Another regional attempt to monitor droughts is the Australian Drought Monitoring 
System, which is based on consecutive months in which rainfall is below the 
threshold (Heim, 2002). In the United States, the drought monitor includes multiple 
indicators and monitoring groups (Svoboda et al., 2002) . 
 
2.6 Remote sensing data 
Obtaining long-term rainfall data is essential for reliable drought analysis. With the 
advent of satellite records and the improvement of their results, there is a new 
possibility for model independent data to emerge, which can be used to validate and 
verify models (AghaKouchak et al., 2012). Since the turn of the millennium, several 
satellite-based products have provided the most accurate real-time and accurate 
global precipitation estimates (e.g., the Tropical Rainfall Measurement Mission 
(TRMM) and Multisatellite Precipitation Analysis (TMPA)) (Huffman et al., 2007). One 
limitation of real-time satellite-derived rainfall estimates is the short The data is 
relatively long (currently 10-13 years).One long-term estimate of precipitation Which 
dates back to 1979, but with a real-time lag, is the revised measure of the Global 
Precipitation Climatology Project. Although significant effort has been made to 
statistically validate satellite products, improvements are still needed in various 
areas, for example in pattern recognition (AghaKouchak et al., 2011) and in bias 
correction algorithms,    Behrangi et al. (2011). According to (AghaKouchak et al., 
2012) the lack of information regarding reliability and uncertainties in most products 
is real-time, and it has not been integrated into the application outside the research 
community yet. Below is a presentation of the rainfall datasets used in the study as 
well as an overview of the combination of multiple modes used . 
 
2.7 Estimating rainfall from remote sensing information using artificial neural 
networks (PERSIANN) 
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Precipitation estimation from remote sensing information using artificial neural 
networks (PERSIANN, (Sorooshian et al., 2000); (Hsu et al., 1997)) was developed 
at the Center for Hydrometry and Remote Sensing (CHRS) at the University of 
California , Irvine and uses neural network technology to map the complex nonlinear 
functions involved in transferring remote sensing data into a form that can be used in 
applications. How the process works is shown in the diagrams in Figure 3, where the 
first layer is the input layer, then there is a hidden layer and finally the output layer. 
Layers are connected by weighted links between nodes of different layers. The 
hidden layer values depend on the input values and those links are weighted and the 
output values are linked to the hidden layer accordingly. While training a neural 
network, an optimization dataset is used, where the input and output values are 
known, and optimization algorithms that minimize the difference between observed 
and desired outputs provide information about weighted connections. In (Sorooshian 
et al., 2000) a detailed explanation of how algorithms are used to produce the 
estimation product, which is a raster map with a 0.5 × 0.5 degree grid provided daily, 
3- and 6-hourly precipitation on a global scale. . The PERSIANN system was based 
on geostationary infrared images (later extended to include the use of both visible 
infrared and daytime visible images (Center for Hydrometeorology and Remote 
Sensing, 2004 .) 

 
Figure 3 Process diagrams in the ANN learning algorithm, where the lines between 

the nodes are weighted links whose weights are determined by the optimization 
algorithms (Center for Hydrometeorology and Remote Sensing, 2004 .) 

 
 
 
2.7 Google Earth Engine 
In the world of geospatial AI, the Google Earth Engine is emerging as a powerful 
force. It provides a cloud platform to harness the huge archive of satellite images. 
This treasure enables researchers and environmental experts to delve deeper into 
understanding our planet. One crucial application is in monitoring and measuring 
drought. Using GEE, users can access datasets such as temperature fluctuations, 
precipitation patterns, and vegetation health derived from satellite observations. 
These rich layers of data then pave the way for calculating various drought 
parameters – indicators that determine the severity and spread of drought episodes. 
From standardized precipitation indices to vegetation condition indices, GEE 
facilitates their calculation over large areas and provides detailed insights into 
drought dynamics. This capacity proves invaluable for resource management, 
agricultural planning, and early warning systems, ultimately helping communities 
prepare for and mitigate the impacts of these challenging environmental events . 
Google Earth enables us to extract valuable information about droughts from its huge 
satellite data archive. We start by defining our region and time frame, then choose 
relevant datasets such as Landsat or Sentinel-2 images and robust drought indices 
such as NDVI or SPEI. Filtering out unwanted items and performing time series 
analysis allows us to extract key insights. Finally, thematic maps and data integration 
tell the story of drought severity and its relationship to factors such as soil moisture. 
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This enables informed decisions and mitigation strategies. To explore further, see the 
Google Earth Engine tutorials and community forums 
(https://earthengine.google.com ./). 
 
3. Preliminary Results and Indicators 
3.1 Introduction 
The results were presented based on the preliminary results of the spatial drought 
indicators for various regions of Yemen and southwestern Arabia, as well as the 
preliminary results of the time series indicators of drought for different regions of 
Yemen according to the available periods. The period in the figure was reduced to 
several years so that the figure appears clearly. We tried Increase the time period in 
the general average for Yemen so that it is as clear as possible . 
 
3.2 Preliminary Results of Spatial Drought Indicators 
The maps, created using JavaScript code in Google Earth, show that drought varies 
greatly across Yemen(https://code.earthengine.google.com/29938f5fcf023a281d71f98323cb0281) . 
3.2.1 Vegetation condition Index (VCI) 
The Vegetation Condition Index (VCI) figure 4 map of Yemen shows that large areas 
of the country are suffering from severe drought. In 2023, the average VCI in Yemen 
was about 0.6, indicating that vegetation in Yemen had declined by up to 40% . 
The vegetation condition factor classification map shows that most areas of Yemen 
fall into the “severe drought” or “exceptional drought” category. Only small areas in 
the extreme north and south of the country fall into the “normal” or “humid” category . 

 
Figure 4 shows a map of the Vegetation Condition Index in Yemen 
3.2.2 The Drought Severity Index (DSI)  
The Drought Severity Index (DSI) figure 5 classification map shows that drought is 
particularly affecting the West Coast and Tihama Plain regions. In 2023, the average 
DSI in these areas was about 0.8, indicating that the drought is very severe. And 
Figure 6 show the Vegetation Condition Index classification map in Yemen.  
 

https://earthengine.google.com/
https://code.earthengine.google.com/29938f5fcf023a281d71f98323cb0281
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Figure 5 shows the Vegetation Condition Index classification map in Yemen 

 
Figure 6 shows the Vegetation Condition Index classification map in Yemen (places 

that do not suffer from drought) 
3.2.3 Normalize difference vegetation Index (NDVI) 
The NDVI map Figure 7 shows that drought has greatly affected vegetation in 
Yemen. In 2023, the average NDVI in Yemen would be around 0.3, indicating an up 
to 70% reduction in vegetation compared to 2000. And figure 8 shows the Drought 
Severity Index classification map in Yemen, and Figure 9 shows the Vegetation 
Condition Index classification map in Yemen. 
 



10 
 

 
Figure 7 shows a map of the Normalize deferent Vegetation Index in Yemen 

 
Figure 8 shows the Drought Severity Index classification map in Yemen 

 
   Figure 9 shows the Vegetation Condition Index classification map in Yemen 
 
3.3 Preliminary Results of Time Series Drought Indicators 
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Time series of vegetation coefficient values in selected areas of Yemen, developed 
using JavaScript code in Google Earth, show that Yemen is increasingly suffering 
from drought. 
(https://code.earthengine.google.com/b187d3ed7e4308f974827f7c938d6eec) 
 
3.3.1 Eastern plateau Region 
Time series for the Eastern Plateau region, which includes Al-Mahra Governorate, 
Hadhramaut Governorate, Shabwa Governorate, Marib Governorate, and parts of Al-
Jawf Governorate, Figure 10 t0 12 show that the drought index has risen significantly 
since 2000. In 2000, the average drought index in the Eastern Plateau was about 
0.3, while to about 0.7 in 2023. This means that vegetation on the eastern plateau 
has declined by up to 50% during this period . 

 

 
Figure 10 shows the time series of vegetation coefficient values in Region 1 of 
Yemen 
 

 
Figure 11 shows the time series of vegetation coefficient values in Region 1 of 
Yemen 
 

https://code.earthengine.google.com/b187d3ed7e4308f974827f7c938d6eec
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Figure 12 shows the time series of vegetation coefficient values in Region 1 of 
Yemen 
 
3.3.2 Tihama plain Region 
Time series for the Tihama Plain region, which includes Al Hudaydah Governorate, 
Taiz Governorate, and Hajjah Governorate, Figure 13 t0 15 show show that the 
drought index has also increased significantly since 2000. In 2000, the average 
drought index in the Tihama Plain was about 0.4, while it rose to about 0.8 in 2023. 
This means that vegetation cover in the Tihama Plain has decreased by up to 40% 
during this period . 

 
Figure 13 shows the time series of vegetation coefficient values in Region 2 of 
Yemen 
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Figure 14 shows the time series of vegetation coefficient values in Region 2 of 
Yemen 
 

 
Figure 15 shows the time series of vegetation coefficient values in Region 2 of 
Yemen 

 
 
 
3.3.3 Mountain highlands Region 
Time series for the mountain highlands region, Figure 16 t0 18 , which includes the 
governorates of Sana'a, Amran, Saada, Dhamar, Taiz, Ibb, and Al Dhalea, show that 
the drought index has risen slightly since 2000. In 2000, the average drought index in 
the highlands was about 0.5, while it rose to about 0.6 in The year 2023. This means 
that vegetation in the mountain highlands has decreased by up to 20% during this 
period . 
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Figure 16 shows the time series of vegetation coefficient values in Region 3 of 
Yemen 
 

 

Figure 17 shows the time series of vegetation coefficient values in Region 3 of 
Yemen 
 

 

Figure 18 shows the time series of vegetation coefficient values in Region 3 of 
Yemen 

 

3.3.4 Average Yemen 
The average time series for Yemen Figure 19 show shows that the drought index has 
increased significantly since 2000. In 2000, the average drought index in Yemen was 
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about 0.5, while it rose to about 0.7 in 2023. This means that the vegetation in Yemen 
has decreased by to 30% during this period . 

 
 
Figure 19 shows the time series of vegetation coefficient values in Region 4 of 
Yemen 
 

4. Conclusion 
This research contributes to the development of new spatiotemporal drought 
assessment techniques, which can be used to improve response to climate change 
in Yemen . 
Dry months were found to last from October to April, while September is the least 
frequent month in the mountainous western regions. It was also found that drought is 
more frequent in the coastal areas and the eastern plateau than in the mountainous 
highlands and western slopes. The maps and diagrams showed the different dry and 
wet climate ranges of the drought coefficient and showed the extent of variation 
between regions and seasons . 
The study also showed, by tracking different time scales for a long time series during 
the period studied, that it appeared that there is a large discrepancy in the rates of 
occurrences of drought events and moderate conditions events, as their rates are 
almost equal in short time scales, for moderate conditions events. Different rates of 
drought events, and varied relatively over other time scales. At the spatial level, 
drought categories were distributed over the study area, with no differences in natural 
resources in terms of a significant decrease, which has a negative impact on 
groundwater, in addition to its effects on soil degradation and lack of agricultural 
production in the region. Finally, the study discovered, by analyzing the results of the 
6-month and 12-month time range, that the prevailing drought in the study area is 
hydrological drought. As a result of the decrease in the amount of groundwater due to 
lack of rain and the excessive depletion of this important vital resource at the region 
level. 
The study recommends the need for academic and governmental research efforts 
and research centers to join forces to create detailed databases for drought and its 
indicators, as well as attempt to conduct studies and research in the field of climate, 
climate change and its resulting effects, such as the phenomenon of drought, and 
develop clear and purposeful strategies to warn of the dangers of the drought 
phenomenon, and attempt to address it and develop appropriate methods. To deal 
with it . 
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The appendixes 
Code 1: Measuring the Drought 
var s2 = ee.ImageCollection('COPERNICUS/S2_HARMONIZED ;)' 
var startDate = ee.Date.fromYMD(2019, 1, 1 ;) 
var endDate = ee.Date.fromYMD(2021, 1, 1 ;) 
//  Function to add a NDVI band to an image 

function addNDVI(image { ) 
   var ndvi = image.normalizedDifference(['B8', 'B4']).rename('ndvi ;)' 
  return image.addBands(ndvi ;) 
 } 
//  Function to mask clouds 

function maskS2clouds(image { ) 
   var qa = image.select('QA60 )' 
   var cloudBitMask = 1 << 10 ; 
   var cirrusBitMask = 1 << 11 ; 
   var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and ( 
             qa.bitwiseAnd(cirrusBitMask).eq(0)) 
  return image.updateMask(mask).divide(10000) 
       . select("B)"*. 
       . copyProperties(image, ["system:time_start )]" 
} 
var originalCollection = s2 
   . filter(ee.Filter.date(startDate, endDate)) 
   . filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 30)) 
   . filter(ee.Filter.bounds(geometry)) 
   . map(maskS2clouds ) 
   . map(addNDVI ;) 
// Display a time-series chart 

var chart = ui.Chart.image.series{( 
  imageCollection: originalCollection.select('ndvi ,)' 
  region: geometry , 
  reducer: ee.Reducer.mean ,)( 
   scale: 20 
.)}setOptions {( 
      title: 'Original NDVI Time Series ,' 
      interpolateNulls: false , 
       vAxis: {title: 'NDVI', viewWindow: {min: 0, max: 1 ,}} 
      hAxis: {title: '', format: 'YYYY-MM ,}' 
      lineWidth: 1 , 
      pointSize: 4 , 
       series { : 

        0{ : color: '#238b45 ,}' 
       ,}  
    )}  

print(chart ;) 
// Let's export the NDVI time-series as a video 

var palette = ['#d73027','#f46d43','#fdae61','#fee08b ,' 
  #' ffffbf','#d9ef8b','#a6d96a','#66bd63','#1a9850 ;]' 

var ndviVis = {min:-0.2, max: 0.8,  palette: palette} 
Map.centerObject(geometry, 16 ;) 
var bbox = Map.getBounds({asGeoJSON: true;)} 
var visualizeImage = function(image{ ) 
  return image.visualize(ndviVis).clip(bbox).selfMask)( 
} 
var visCollectionOriginal = originalCollection.select('ndvi)' 
   . map(visualizeImage) 
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Export.video.toDrive{( 
   collection: visCollectionOriginal , 
  description: 'Original_Time_Series ,' 
  folder: 'earthengine ,' 
  fileNamePrefix: 'original ,' 
  framesPerSecond: 2 , 
  dimensions: 800 , 
  region: bbox )} 
https://code.earthengine.google.com/29938f5fcf023a281d71f98323cb0281 
 
Code 2: Measuring the Temporal Drought Change Index    
var s2 = ee.ImageCollection('COPERNICUS/S2_HARMONIZED ;)' 
 
var startDate = ee.Date.fromYMD(2019, 1, 1 ;) 
var endDate = ee.Date.fromYMD(2021, 1, 1 ;) 
 
//  Function to add a NDVI band to an image 

function addNDVI(image { ) 
   var ndvi = image.normalizedDifference(['B8', 'B4']).rename('ndvi ;)' 
  return image.addBands(ndvi ;) 
 } 
 
//  Function to mask clouds 

function maskS2clouds(image { ) 
   var qa = image.select('QA60 )' 
   var cloudBitMask = 1 << 10 ; 
   var cirrusBitMask = 1 << 11 ; 
   var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and ( 
             qa.bitwiseAnd(cirrusBitMask).eq(0)) 
  return image.updateMask(mask).divide(10000) 
       . select("B)"*. 
       . copyProperties(image, ["system:time_start )]" 
} 
 
var originalCollection = s2 
   . filter(ee.Filter.date(startDate, endDate)) 
   . filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 30)) 
   . filter(ee.Filter.bounds(geometry)) 
   . map(maskS2clouds ) 
   . map(addNDVI ;) 
 
 

// Display a time-series chart 
var chart = ui.Chart.image.series{( 
  imageCollection: originalCollection.select('ndvi ,)' 
  region: geometry , 
  reducer: ee.Reducer.mean ,)( 
   scale: 20 
.)}setOptions {( 
      title: 'Original NDVI Time Series ,' 
      interpolateNulls: false , 
       vAxis: {title: 'NDVI', viewWindow: {min: 0, max: 1 ,}} 
      hAxis: {title: '', format: 'YYYY-MM ,}' 
      lineWidth: 1 , 
      pointSize: 4 , 
       series { : 

        0{ : color: '#238b45 ,}' 
       ,}  

 
    )}  

print(chart ;) 
 
//  Prepare a regularly-spaced Time-Series 

 
//  Generate an empty multi-band image matching the bands 
//  in the original collection 

var bandNames = ee.Image(originalCollection.first()).bandNames ;)( 
var numBands = bandNames.size;)( 
var initBands = ee.List.repeat(ee.Image(), numBands ;) 
var initImage = ee.ImageCollection(initBands).toBands().rename(bandNames) 
 
//  Select the interval. We will have 1 image every n days 

var n = 5 ; 
var firstImage = ee.Image(originalCollection.sort('system:time_start').first))( 

https://code.earthengine.google.com/29938f5fcf023a281d71f98323cb0281
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var lastImage = ee.Image(originalCollection.sort('system:time_start', false).first))( 
var timeStart = ee.Date(firstImage.get('system:time_start ))' 
var timeEnd = ee.Date(lastImage.get('system:time_start ))' 
 
var totalDays = timeEnd.difference(timeStart, 'day ;)' 
var daysToInterpolate = ee.List.sequence(0, totalDays, n ) 
 
var initImages = daysToInterpolate.map(function(day{ ) 
   var image = initImage.set {( 
     ' system:index': ee.Number(day).format('%d ,)' 
     ' system:time_start': timeStart.advance(day, 'day').millis ,)( 

      // Set a property so we can identify interpolated images 
     ' type': 'interpolated ' 
  )}  

  return image 
)} 
 
var initCol = ee.ImageCollection.fromImages(initImages) 
print('Empty Collection', initCol ) 
 
//  Merge original and empty collections 

var originalCollection = originalCollection.merge(initCol ) 
 
//  Interpolation 

 
//  Add a band containing timestamp to each image 
//  This will be used to do pixel-wise interpolation later 

var originalCollection = originalCollection.map(function(image { ) 
   var timeImage = image.metadata('system:time_start').rename('timestamp )' 

    // The time image doesn't have a mask  . 
    // We set the mask of the time band to be the same as the first band of the image 

   var timeImageMasked = timeImage.updateMask(image.mask().select(0)) 
  return image.addBands(timeImageMasked).toFloat ;)( 
)} 
 
//  For each image in the collection, we need to find all images 
// before and after the specified time-window 

 
//  This is accomplished using Joins 
//  We need to do 2 joins 
//  Join 1: Join the collection with itself to find all images before each image 
//  Join 2: Join the collection with itself to find all images after each image 

 
//  We first define the filters needed for the join 

 
// Define a maxDifference filter to find all images within the specified days 
//  The filter needs the time difference in milliseconds 
// Convert days to milliseconds 

 
//  Specify the time-window to look for unmasked pixel 

var days = 45 ; 
var millis = ee.Number(days).multiply(1000*60*60*24) 
 
var maxDiffFilter = ee.Filter.maxDifference{( 
  difference: millis , 
  leftField: 'system:time_start ,' 
  rightField: 'system:time_start ' 
)} 
 
//  We need a lessThanOrEquals filter to find all images after a given image 
//  This will compare the given image's timestamp against other images' timestamps 

var lessEqFilter = ee.Filter.lessThanOrEquals{( 
  leftField: 'system:time_start ,' 
  rightField: 'system:time_start ' 
)} 
 
//  We need a greaterThanOrEquals filter to find all images before a given image 
//  This will compare the given image's timestamp against other images' timestamps 

var greaterEqFilter = ee.Filter.greaterThanOrEquals {( 
  leftField: 'system:time_start ,' 
  rightField: 'system:time_start ' 
)} 
 
 
//  Apply the joins 
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//  For the first join, we need to match all images that are after the given image . 
//  To do this we need to match 2 conditions 

// 1  . The resulting images must be within the specified time-window of target image 
// 2  . The target image's timestamp must be lesser than the timestamp of resulting images 

// Combine two filters to match both these conditions 
var filter1 = ee.Filter.and(maxDiffFilter, lessEqFilter ) 
//  This join will find all images after, sorted in descending order 
//  This will gives us images so that closest is last 

var join1 = ee.Join.saveAll{( 
  matchesKey: 'after ,' 
  ordering: 'system:time_start ,' 
  ascending: false )} 
    
var join1Result = join1.apply {( 
  primary: originalCollection , 
   secondary: originalCollection , 
   condition: filter1 
)} 
//  Each image now as a property called 'after' containing 
// all images that come after it within the time-window 

print(join1Result.first ))( 
 

// Do the second join now to match all images within the time-window 
//  that come before each image 

var filter2 = ee.Filter.and(maxDiffFilter, greaterEqFilter ) 
//  This join will find all images before, sorted in ascending order 
//  This will gives us images so that closest is last 

var join2 = ee.Join.saveAll{( 
  matchesKey: 'before ,' 
  ordering: 'system:time_start ,' 
  ascending: true )} 
    
var join2Result = join2.apply {( 
  primary: join1Result , 
   secondary: join1Result , 
   condition: filter2 
)} 
 
//  Each image now as a property called 'before' containing 
// all images that come after it within the time-window 

print(join2Result.first ))( 
 
var joinedCol = join2Result ; 
 

// Do the interpolation 
 
//  We now write a function that will be used to interpolate all images 
//  This function takes an image and replaces the masked pixels 
// with the interpolated value from before and after images . 

 
var interpolateImages = function(image{ ) 
   var image = ee.Image(image ;) 

    // We get the list of before and after images from the image property 
    // Mosaic the images so we a before and after image with the closest unmasked pixel 

   var beforeImages = ee.List(image.get('before ))' 
   var beforeMosaic = ee.ImageCollection.fromImages(beforeImages).mosaic)( 
   var afterImages = ee.List(image.get('after ))' 
   var afterMosaic = ee.ImageCollection.fromImages(afterImages).mosaic )( 
 

    // Interpolation formula 
    // y = y1 + (y2-y1)*((t – t1) / (t2 – t1)) 
    // y = interpolated image 
    // y1 = before image 
    // y2 = after image 
    // t = interpolation timestamp 
    // t1 = before image timestamp 
    // t2 = after image timestamp 

    
    // We first compute the ratio (t – t1) / (t2 – t1) 

 
    // Get image with before and after times 

   var t1 = beforeMosaic.select('timestamp').rename('t1)' 
   var t2 = afterMosaic.select('timestamp').rename('t2 )' 
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   var t = image.metadata('system:time_start').rename('t )' 
 
   var timeImage = ee.Image.cat([t1, t2, t )] 
 
   var timeRatio = timeImage.expression('(t - t1) / (t2 - t1 { ,') 
     ' t': timeImage.select('t ,)' 
     ' t1': timeImage.select('t1 ,)' 
     ' t2': timeImage.select('t2 ,)' 
  )}  
    // You can replace timeRatio with a constant value 0.5 
    // if you wanted a simple average 

    
   // Compute an image with the interpolated image y 

   var interpolated = beforeMosaic 
    . add((afterMosaic.subtract(beforeMosaic).multiply(timeRatio ))) 
   // Replace the masked pixels in the current image with the average value 

   var result = image.unmask(interpolated) 
  return result.copyProperties(image, ['system:time_start )]' 
} 
 
//  map() the function to interpolate all images in the collection 

var interpolatedCol = ee.ImageCollection(joinedCol.map(interpolateImages)) 
 
//  Once the interpolation are done, remove original images 
//  We keep only the generated interpolated images 

var regularCol = interpolatedCol.filter(ee.Filter.eq('type', 'interpolated))' 
 
 

// Display a time-series chart 
var chart = ui.Chart.image.series{( 
  imageCollection: regularCol.select('ndvi ,)' 
  region: geometry , 
  reducer: ee.Reducer.mean ,)( 
   scale: 20 
.)}setOptions {( 
      title: 'Regular NDVI Time Series ,' 
      interpolateNulls: false , 
       vAxis: {title: 'NDVI', viewWindow: {min: 0, max: 1 ,}} 
      hAxis: {title: '', format: 'YYYY-MM ,}' 
      lineWidth: 1 , 
      pointSize: 4 , 
       series { : 

        0{ : color: '#238b45 ,}' 
       ,}  
    )}  

print(chart ;) 
 
 
//  SavatskyGolayFilter 
// https://www.open-geocomputing.org/OpenEarthEngineLibrary/#.ImageCollection.SavatskyGolayFilter 

 
// Use the default distanceFunction 

var distanceFunction = function(infromedImage, estimationImage { ) 
  return ee.Image.constant ( 
      ee.Number(infromedImage.get('system:time_start ))' 
       . subtract ( 
        ee.Number(estimationImage.get('system:time_start )))' 

         ;)  
   }  

 
//  Apply smoothing 

 
var oeel=require('users/OEEL/lib:loadAll ;)' 
 
var order = 3 ; 
 
var sgFilteredCol = oeel.ImageCollection.SavatskyGolayFilter ( 
  regularCol  , 
  maxDiffFilter , 
  distanceFunction , 
  order) 
 
print(sgFilteredCol.first ))( 

// Display a time-series chart 
var chart = ui.Chart.image.series{( 
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  imageCollection: sgFilteredCol.select(['ndvi', 'd_0_ndvi'], ['ndvi', 'ndvi_sg ,)]' 
  region: geometry , 
  reducer: ee.Reducer.mean ,)( 
   scale: 20 
.)}setOptions {( 
      lineWidth: 1 , 
      title: 'NDVI Time Series ,' 
      interpolateNulls: false , 
       vAxis: {title: 'NDVI', viewWindow: {min: 0, max: 1 ,}} 
      hAxis: {title: '', format: 'YYYY-MM ,}' 
      lineWidth: 1 , 
      pointSize: 4 , 
       series { : 

        0{ : color: '#66c2a4', lineDashStyle: [1, 1], pointSize: 2}, // Original NDVI 
        1{ : color: '#238b45', lineWidth: 2 }, // Smoothed NDVI 

       ,}  
 

    )}  
print(chart ;) 
 
 

// Let's visualize the NDVI time-series 
Map.centerObject(geometry, 16 ;) 
var bbox = Map.getBounds({asGeoJSON: true;)} 
 
var palette = ['#d73027','#f46d43','#fdae61','#fee08b','#ffffbf','#d9ef8b','#a6d96a','#66bd63','#1a9850 ;]' 
var ndviVis = {min:-0.2, max: 0.8,  palette: palette} 
 
var visualizeImage = function(image{ ) 
  return image.visualize(ndviVis).clip(bbox).selfMask)( 
} 
 
var visCollectionRegular = regularCol.select('ndvi )' 
   . map(visualizeImage) 
 
var visualizeSgFiltered = sgFilteredCol.select('d_0_ndvi )' 
   . map(visualizeImage) 
 
 
Export.video.toDrive{( 
   collection: visCollectionRegular , 
  description: 'Regular_Time_Series ,' 
  folder: 'earthengine ,' 
  fileNamePrefix: 'regular ,' 
  framesPerSecond: 2 , 
  dimensions: 800 , 
  region: bbox )} 
    
Export.video.toDrive{( 
   collection: visualizeSgFiltered , 
  description: 'Filtered_Time_Series ,' 
  folder: 'earthengine ,' 
  fileNamePrefix: 'sg_filtered ,' 
  framesPerSecond: 2 , 
  dimensions: 800 , 
  region: bbox )} 
https://code.earthengine.google.com/b187d3ed7e4308f974827f7c938d6eec 

https://code.earthengine.google.com/b187d3ed7e4308f974827f7c938d6eec

